13. 3 Sum
Topic :
arrays
Difficulty :
medium
Problem Link :
problem statement
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not
matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
solution
import java.io.*;
import java.util.*;
class Three_Sum
{
public static void main (String args[])
{
int nums[]={-1,0,1,2,-1,-4};
System.out.println(threeSum(nums));
}
static List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
int n = nums.length;
List<List<Integer>> res = new ArrayList<>();
for(int i =0;i<n-2;i++)
{
if(i == 0 || (i> 0 && nums[i] != nums[i-1]))
{
int sum = -nums[i];
int low = i + 1;
int high = n-1;
while(low < high)
{
if((nums[low] + nums[high]) == sum)
{
List<Integer> temp = new ArrayList<>();
temp.add(nums[i]);
temp.add(nums[low]);
temp.add(nums[high]);
res.add(temp);
low++;
high--;
while(low < high && nums[low] == nums[low-1])
low++;
while(high > low && nums[high] == nums[high+1])
high--;
}
else if((nums[low] + nums[high]) > sum)
{
high--;
}
else if((nums[low] +nums[high]) < sum)
{
low++;
}
}
}
}
return res;
}
}