30. Count Inversions
Topic :
arrays
Difficulty :
hard
Problem Link :
problem statement
Given an array of integers. Find the Inversion Count in the array.
Inversion Count: For an array, inversion count indicates how far (or close) the array is from being sorted. If array is already sorted then the inversion count is 0. If an array is sorted in the reverse order then the inversion count is the maximum.
Formally, two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j.
Example 1:
Input: N = 5, arr[] = {2, 4, 1, 3, 5}
Output: 3
Explanation: The sequence 2, 4, 1, 3, 5
has three inversions (2, 1), (4, 1), (4, 3).
Example 2:
Input: N = 5
arr[] = {2, 3, 4, 5, 6}
Output: 0
Explanation: As the sequence is already
sorted so there is no inversion count.
Example 3:
Input: N = 3, arr[] = {10, 10, 10}
Output: 0
Explanation: As all the elements of array
are same, so there is no inversion count.
Your Task:
You don't need to read input or print anything. Your task is to complete the function inversionCount() which takes the array arr[] and the size of the array as inputs and returns the inversion count of the given array
solution
import java.io.*;
import java.util.*;
class Count_Inversions
{
static int merge(int arr[], int temp[],int left,int mid, int right) // returns count inversions of an array
{
int i,j,k;
int inv_count=0;
i=left; // index for left subarray
j=mid ; // index for right subarray
k=left;// index of resultant merged array
while ((i<=mid-1) && (j<=right))
{
if(arr[i]<arr[j]) // if the element of the left half is smaller
{temp[k++]=arr[i++];// simply copy it to the temp array
}
else // if the right half is smaller
{ temp[k++]=arr[j++]; // copy the right half elemnt to the temp array
inv_count =inv_count +(mid-1); // i.e add all elemnts right to it in the left half can make pairs with it
}
}
// if the right pointer exceeds
while (i<=mid-1)
{ temp[k++]=arr[i++]; // copy all he elements
}
// if the left pointer exceeds
while ( j<=right)
{ temp[k++]=arr[j++];
}
for( i=left;i<=right;i++)
{ arr[i]=temp[i]; // copy all the elements to the original array
}
return inv_count;
}
static int mergeSort(int arr[], int temp[],int left ,int right)
{ int mid,inv_count=0;
if(right>left) // no need to split if there is only one element
{ mid=(right+left)/2; // find the mid to split the array
inv_count+=mergeSort(arr,temp,left,mid); // recurrsive call to find the no.of inversion in the first half
inv_count+=mergeSort(arr,temp,mid+1,right); // recurrsive call to find the no.of pairs in the second half
inv_count+=merge(arr,temp,left,mid+1,right); // finds the total inv_count of both the arrays
}
return inv_count;
}
public static void main(String args[])
{ int arr[]={5,3,2,4,1};
int n=arr.length;
int temp[]=new int [n];
int ans =mergeSort( arr, temp,0 ,n-1);
System.out.println(ans);
}
}