30. Count Inversions

Topic :

arrays

Difficulty :

hard

Problem Link :


problem statement

Given an array of integers. Find the Inversion Count in the array.

Inversion Count: For an array, inversion count indicates how far (or close) the array is from being sorted. If array is already sorted then the inversion count is 0. If an array is sorted in the reverse order then the inversion count is the maximum. 
Formally, two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j.

Example 1:

Input: N = 5, arr[] = {2, 4, 1, 3, 5}
Output: 3
Explanation: The sequence 2, 4, 1, 3, 5 
has three inversions (2, 1), (4, 1), (4, 3).
Example 2:

Input: N = 5
arr[] = {2, 3, 4, 5, 6}
Output: 0
Explanation: As the sequence is already 
sorted so there is no inversion count.
Example 3:

Input: N = 3, arr[] = {10, 10, 10}
Output: 0
Explanation: As all the elements of array 
are same, so there is no inversion count.

Your Task:
You don't need to read input or print anything. Your task is to complete the function inversionCount() which takes the array arr[] and the size of the array as inputs and returns the inversion count of the given array


solution

import java.io.*;
import java.util.*;
class Count_Inversions
{
   static int merge(int arr[], int temp[],int left,int mid, int right) // returns count inversions of an array 
   { 
      int i,j,k;
      int inv_count=0;
      
      i=left; // index for left subarray
      j=mid ; // index for right subarray
      k=left;// index of resultant merged array
      
      while ((i<=mid-1) && (j<=right))
      {
          if(arr[i]<arr[j]) // if the element of the left half is smaller 
          {temp[k++]=arr[i++];// simply copy it to the temp array
            }
          else // if the right half is smaller 
           { temp[k++]=arr[j++];  // copy the right half elemnt to the temp array
              inv_count =inv_count +(mid-1); // i.e add all elemnts right to it in the left half can make pairs with it
            }
        }
        
        // if the right pointer exceeds
        while (i<=mid-1)
        { temp[k++]=arr[i++]; // copy all he elements
        }
        // if the left pointer exceeds 
        while ( j<=right)
        { temp[k++]=arr[j++];
        }
        
        for( i=left;i<=right;i++)
        { arr[i]=temp[i]; // copy all the elements to the original array
        }
      return inv_count;
     }
    
    static int mergeSort(int arr[], int temp[],int left ,int right)
    {  int mid,inv_count=0;
       if(right>left) // no need to split if there is only one element
       { mid=(right+left)/2; // find the mid to split the array
           
           inv_count+=mergeSort(arr,temp,left,mid); // recurrsive call to find the no.of inversion in the first half
           inv_count+=mergeSort(arr,temp,mid+1,right); // recurrsive call to find the no.of pairs in the second half
           
           inv_count+=merge(arr,temp,left,mid+1,right); // finds the total inv_count of both the arrays 
         }
        return inv_count;
    }
   
   public static void main(String args[])
   { int arr[]={5,3,2,4,1};
      int n=arr.length;
      int temp[]=new int [n];
      int ans =mergeSort( arr,  temp,0 ,n-1);
      System.out.println(ans);
    }
}
Copyright © 2023 KIZLE. - All Rights Reserved.
Website by Kounik Maitra