76. Find Median from Data Stream
Topic :
priority queue
Difficulty :
hard
Problem Link :
problem statement
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.
- For example, for
arr = [2,3,4]
, the median is3
. - For example, for
arr = [2,3]
, the median is(2 + 3) / 2 = 2.5
.
Implement the MedianFinder class:
MedianFinder()
initializes theMedianFinder
object.void addNum(int num)
adds the integernum
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within10-5
of the actual answer will be accepted.
Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]
Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
Constraints:
-105 <= num <= 105
- There will be at least one element in the data structure before calling
findMedian
. - At most
5 * 104
calls will be made toaddNum
andfindMedian
.
solution
import java.io.*;
import java.util.*;
class Median_from_Data_Stream
{
class MedianFinder {
PriorityQueue <Integer> maxHeap=new PriorityQueue<>(Collections.reverseOrder());// stores the smaller numbers
PriorityQueue <Integer> minHeap=new PriorityQueue<>(); // stores the larger numbers
public MedianFinder() {
}
void addNum(int num) {
if(maxHeap.isEmpty() ||num<=maxHeap.peek())
maxHeap.add(num);
else
minHeap.add(num);
if(maxHeap.size() > minHeap.size()+1){
minHeap.add(maxHeap.poll());
}
else if(minHeap.size()>maxHeap.size())
maxHeap.add(minHeap.poll());
}
double findMedian() {
int x= maxHeap.peek();
int y=!minHeap.isEmpty() ? minHeap.peek(): 0;
if(maxHeap.size()==minHeap.size()) // there are even no.of elements
return (x+y)/2.0;
return x;
}
}
void main ()
{ MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
System.out.println(medianFinder.findMedian()); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
System.out.println(medianFinder.findMedian()); // return 2.0
}
}